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ABSTRACT

Requirements for submarine periscope depth operations have been increased by
integration with carrier battle groups, littoral operations, and contributions to joint
surveillance. Improved periscope depth performance is therefore imperative. Submarine
control personnel rely on a large number of analog gauges and indications. An integrated
digital display system could enhance the ergonomics of the human control interface and
display additional parameters. This thesis investigates the required feedbacks for robust
automatic depth control at periscope depth, and thus indirectly determines the additional

parameters desired for an integrated display.

A model of vertical plane submarine dynamics is coupled with first and second
order wave force solutions for a particular submarine hull form. Sliding mode control and
several schemes of state feedback are used for automatic control. Head and beam seas at
sea states three and four are investigated. The automatic control effectiveness provides
insight into the indications used by the ship's control party in operations at periscope depth.
One possible display system is proposed, with several additional enhancements to improve
ship's safety, reduce operator fatigue, and enable accurate reconstruction of the events

leading to a loss of depth control.
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INTRODUCTION

GENERAL

The need for attack submarines to operate at periscope depth has been increased by
integration with carrier battle groups, operations in the shallow littoral, and contributions to
joint surveillance.

Operating at periscope depth beneath a seaway, a submarine is in an unstable
condition. As the free surface is approached, the seaway forces increase, trying to pull the
submarine to the surface. To counter these forces, the ship’s ballast is changed and control
surfaces are used. Because of the seaway's stochastic nature, manual operation for long
periods at periscope depth taxes the ship’s control party.

Operators must remain aware of the environmental conditions. If the sea becomes
quiescent, the submarine will sink out. If the sea suction forces are greater than the ballast
and planes authority, the submarine will broach the free surface increasing detection risk by
several orders of magnitude. Other events, like temperature or salinity changes, can also
have major effects on reliable depth keeping. Contributing to the environmental issues, the
need to use minimum speed for a given sea state to control the detectable mast feather
reduces the available planes authority, and increases the difficulty of depth control.

However, the current submarine force is not optimized for these operations. One
inexpensive area for improvement is the display system for the ship’s control party.

Modern digital display systems offer ergonomic improvements over current gauges and
readouts.

Given a requirement to conduct submarine ship control manually, a fundamental
question is that of how to display the state of the ship to the operators. Aside from the
obvious indications like ship’s pitch angle, depth, and control surface positions what else
would be useful? Candidates include the net force acting on the ship, accelerations, and
various time averaged values. Implied in this is that a nontraditional means of display will be
used to show these parameters, so that the operators will not have to rely on a number of
gauges or meters, with averaging of results only available only by the calibrated eye.

An intelligent assistant to the ship’s control party would show items of current

concern, and issue alerts based on an operator programmable doctrine. Issues like mast



exposure, ship’s relationship to the bottom, and trim state could be shown in an intuitive,
logical manner.
Current evolutions and other items relating to the tactical employment could be included as
required.

AIM OF THIS STUDY

Although the ship’s control party currently relies on a small number of indications,
the ability to sense “by the seat of the pants” cannot be discounted. This thesis investigates
required feedbacks for robust automatic depth control at periscope depth, and thus
indirectly evaluates the additional indications to be added to an integrated display.

This approach assumes that the best ship’s control parties already use system states
for control which are not explicitly displayed.

THESIS OUTLINE

Chapter 11 contains the development of the deeply submerged submarine dynamics
model. Chapter Il gives the development and source of the wave forces used to simulate
operations at periscope depth. In Chapter IV, optimization studies are performed for nine
different cases of state feedback control. This gives a feeling for the quality of depth
control achievable by the use of different levels of sensors. Chapter V explores the use of
sliding mode control for periscope depth operations. In Chapter VI, current ships control
technology is reviewed and an integrated display is proposed. Conclusions and

recommendations are given in Chapter VII.



